
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2005; 47:1085–1091
Published online 20 January 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.853

A high-resolution scheme for the equations governing 2D
bed-load sediment transport

Justin Hudson1;∗;† and Peter K. Sweby2;‡

1School of Mathematics; University of Manchester; Sackville Street; Manchester; M60 1QD; U.K.
2Department of Mathematics; University of Reading; Whiteknights; P.O. Box 220; Reading;

Berkshire; RG6 6AX; U.K.

SUMMARY

This paper investigates how to accurately numerically approximate the equations governing 2D sediment
transport by considering two approaches: a steady and unsteady approach. A high-resolution scheme
based on Roe’s scheme is used to approximate both approaches with the results compared for a 2D
test case. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sediment transport plays an important role in many coastal engineering applications. The
ability to obtain an accurate prediction of sediment transport is crucial to the understanding
of bed morphological change and coastal water quality. Thus, it is of great importance to
obtain an accurate numerical approximation of the governing equations.
In this paper, we adapt the one-dimensional sand transport model discussed by Hudson

and Sweby [1] to two dimensions. The 2D model, which makes the assumption of constant
porosity consists of the equation for conservation of mass,

ht + (uh)x + (vh)y=0 (1)
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the equation for conservation of momentum in the x direction,

(uh)t +
[
hu2 +

1
2
gh2

]
x
+ (huv)y= − ghBx (2)

the equation for conservation of momentum in the y direction,

(uh)t + (huv)x +
[
hv2 +

1
2
gh2

]
y
= − ghBy (3)

and the bed-updating equation,

Bt + �(q1)x + �(q2)y = 0 where �=
1

1− � (4)

Here, h(x; y; t), u(x; y; t), v(x; y; t), B(x; y; t), q1(u; v; h) and q2(u; v; h) denote the water height,
velocity in x and y direction, bed height and sediment transport rate in the x and y direction,
respectively. The porosity is assumed to be constant, i.e. �=0:4. In general, the sediment
transport �uxes, qk(u; v; h), are not direct functions of B, which can cause di�culties for
some numerical schemes (especially if the sediment transport �ux is algebraically complex).
To illustrate the numerical techniques discussed in this paper, we use the basic sediment

transport �ux of Grass [2], to obtain

q1(u; v)=Au(u2 + v2)1=2(m−1) and q2(u; v)=Av(u2 + v2)1=2(m−1) (5)

where A is a dimensional constant that is usually determined from experimental data and m
is chosen such that 16m64, see References [3, 4] for more information. In this paper, we
consider �ne sand (d50 ≈ 0:25 mm), which results in A=0:001, and use m=3.
Like many inhomogeneous systems of conservation laws,

wt + F(w)x +G(w)y=R (6)

where F(w) and G(w) denote the �ux-functions and R contains the inhomogeneous terms,
determination of a general solution to the equations is not viable, and so numerical methods
are implemented to solve them. In the next section, we extend two formulations (a steady and
unsteady approach) discussed in Reference [1] to two dimensions, which are then discretised
in Section 3 for a high-resolution scheme discussed by Hubbard and Garcia-Navarro [5] with
the results of the two approaches compared in Section 4 for a 2D test problem.

2. STEADY AND UNSTEADY APPROACH

In this paper, we consider two approaches discussed by Cunge et al. [6] that can be used to
approximate system (1)–(4). Both approaches are derived for the sediment transport �ux (5),
but they can be adapted for any sediment transport formulae required with varying degrees
of di�culty. The steady approach has been researched thoroughly and is currently used in
industry whereas little progress has been made on the unsteady approach due to the complexity
of accurate approximation.
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2.1. Steady approach (formulation A-CV)

The steady approach assumes that changes in the water �ow are negligible, i.e. only due to
the morphological changes, and the bed evolves at a much slower rate than the water �ow.
These assumptions allow the steady approach to take advantage of the slow evolution of the
bed by decoupling the water �ow from the bed update and sequentially updating the bed
followed by an iteration of the 2D shallow water equations,

 huh
vh



t

+


 uh
hu2 + 1

2gh
2

huv



x

+


 vh

huv
hv2 + 1

2gh
2



y

=


 0

−ghBx
−ghBy


 (7)

to an equilibrium state whilst keeping the bed �xed. For most practical applications, iterating
the water �ow to an equilibrium state for each bed update (steady approach) reduces the
computational time taken to evolve the water �ow with the bed (unsteady approach). Thus,
this approach will be computationally faster for test cases where the bed evolves slowly.
However, Hudson and Sweby [1] illustrated that the steady approach was only valid in 1D
for a limited set of cases but for those cases it produced less di�usive results than the unsteady
approach.

2.2. Unsteady approach (formulation C)

The unsteady approach does not make any assumptions and preserves the connection between
the water �ow and the sediment by discretising the equations simultaneously. In Reference
[1], a rigorous comparison was made in 1D for four unsteady approaches and it was illustrated
that approximating system (1)–(4) as written produced accurate results for a limited set of test
cases. This may be due to the singular Jacobian matrix and is recti�ed by using the product
rule,

g(Bh)x= gBhx + ghBx

to re-write the inhomogeneous terms present in the equations for conservation of momentum
(2) and (3) thus, obtaining the system


h
uh
vh
B



t

+




uh
hu2 + 1

2gh
2 + ghB

huv
�q1



x

+




hv
huv

hv2 + 1
2gh

2 + ghB
�q2



y

=




0
gBhx
gBhy
0


 (8)

The Jacobian matrix of this system is no longer singular and tests in 1D illustrated that this
system is considerably more robust than the original system (formulation A-SF). Hudson and
Sweby [1] also illustrated that the two systems were conservatively equivalent and Hudson
[4] illustrated that as the mesh is re�ned, the results of the two systems converge.

3. HIGH-RESOLUTION SCHEME

Both approaches are approximated by using a high-resolution scheme (see Reference [7]
for more information) discussed by Hubbard and Garcia-Navarro [5] that is based on Roe’s
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scheme [8]. The scheme balances the approximation of the inhomogeneous terms with the
numerical �ux-functions for equilibrium problems,

Fx +Gy=R

and thus, satis�es the C-property of Berm�udez and V�azquez [9]. To ensure this balance occurs,
the numerical scheme separates the inhomogeneous terms,

R= f + g ⇒ Fx= f and Gy= g

where f and g contain the terms with derivatives in the x and y direction, respectively. The
high-resolution scheme can now be written as

wn+1i; j =w
n
i; j − sx

(
F∗
i+1=2; j − F∗

i−1=2; j
)
+ sx

(
f−i+1=2; j + f

+
i−1=2; j

)

− sy
(
G∗
i; j+1=2 −G∗

i; j−1=2
)
+ sy

(
g−
i; j+1=2 + g

+
i; j−1=2

)
(9)

where

F∗
i+1=2; j=

1
2
(Fni+1; j + F

n
i; j)− 1

2

p∑
k=1

[
�̃Fk |�̃

F
k |(1−�(�̃Fk )(1− |�̃Fk |))ẽFk

]n
i+1=2; j

f±i+1=2; j=
1
2

p∑
k=1

[
�̃
F
k ẽ
F
k (1± sgn(�̃Fk )(1−�(�̃Fk )(1− |�̃Fk |)))

]n
i+1=2; j

�̃Fk = sx�̃
F
k ; �̃

F
k =

(�̃k)FI+1=2; j
(�̃k)Fi+1=2; j

; I = i − sgn(�̃Fk )i+1=2; j ; sx=
�t
�x
; sy=

�t
�y

and �(�̃k) is the minmod �ux-limiter (see Reference [10] for more information).
The scheme uses Roe averaged values, which are denoted with a ∼ and are calculated from

the Roe decomposition (see References [4, 5, 8] for more details), where p is the number of
components in the system (p=3 or 4 depending on the approach). The eigenvalues, �̃, and
eigenvectors, ẽ, of the Roe averaged Jacobian matrix, Ã, are used to obtain the wave strengths,
�̃, and the approximation of the inhomogeneous terms, �̃, from the Roe decomposition. The
approximations of Gni; j+1=2 and g

±
i; j+1=2 follow in an obvious manner. To ensure the scheme

remains stable, we use a variable time step

�t=
�min(�x;�y)
2maxi; j(|�F |; |�G|)

We now adapt the high-resolution scheme to approximate the steady and unsteady approach
with the sediment transport �ux (2) with m=3.
For the steady approach, the system is decoupled into a water �ow (5) approximation,

using the Roe averages obtained by Glaister [11], which is iterated to an equilibrium state,
followed by a bed update as a separate scalar equation using the approach of De Vries [12],

�F = �
[
@q1
@B

]
≈ guqu
c2 − u2 where qu=

@q1
@u
=A(3u2 + v2)
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(and similarly for �G) to calculate the wavespeed. The scheme can be adapted to approximate
the unsteady approach by using the values in Reference [4] which were derived for the
sediment transport �ux (5).

4. NUMERICAL RESULTS

So that we can compare the two approaches in 2D, we use the following 2D test problem,
which consists of a 1500 m× 1000 m channel with initial conditions,

h(x; y; 0)=10− B(x; y; 0); u(x; y; 0)=
10

h(x; y; 0)
; v(x; y; 0)=0

and the initial bathymetry is a dome of sand,

B(x; y; 0)=



sin2

(
�(x − 500)
200

)
sin2

(
�(y − 400)

200

)
if 5006x6700, 4006y6600

0 otherwise

We compare the two approaches for the high-resolution scheme (with a CFL=0:8 and
�x=�y=20) by running the channel test problem until t=200 h. By this time, DeVriend
[13] deduced that the dome would spread out into a star-shaped pattern. For this test case, the
Froude number is approximately 0.1. Figures 1 and 2 show the results obtained at t=200 h
for the steady and unsteady approach, respectively. Both approaches have produced smooth
results with no oscillations present, but the steady approach has produced kinks at the front
of (and also behind) the dome. Notice that the steady approach seems to have moved the
same at a slightly faster speed than the unsteady approach.

Figure 1. Contour and vector plot of the results using the steady approach at t=200 h (B).
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Figure 2. Contour and vector plot of the results using the unsteady approach at t=200 h (B).

When Hudson and Sweby [1] compared the approaches in 1D, the steady approach was
more accurate than the unsteady approach when the bed was interacting slowly with the water
�ow, A60:01 and for a small Froude number. However, in 2D the steady approach now seems
to be producing inaccurate results due to the kinks present and the di�erence in position and
shape of the pulse.

5. CONCLUSION

In this paper, we have illustrated that in two dimensions, the results of the steady approach
are less accurate than in one dimension. Moreover, the steady approach produced worse re-
sults than the unsteady approach even for a test case that it was designed for. Thus, in 2D
the robustness of the unsteady approach is even more apparent due to the steady approach
producing inaccurate results even for test cases where the assumptions made are valid. Un-
fortunately, for the present unsteady approach the time step size can be a couple of orders
of magnitude smaller (depending on the Froude number) than the steady approach, hence
leading to associated longer run times. However, we can signi�cantly reduce the run times of
the unsteady approach by the adoption of an implicit version of the scheme.
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